Mercury Instrumentation

Intelligent control of cryogenic and magnetic environments

The Business of Science®

Mercury Instrumentation

MercuryiTC intelligent temperature controller

Accurate measurements

- Measures and controls temperatures to below 250 mK with a precision of 0.1 mK. (24 bit A to D resolution)
- Heater output up to 80 W per channel
- Uses a true constant voltage source for sensor excitation, preventing self-heating and allowing for high quality measurements at the lowest temperature

0

- Supports all standard cryogenic sensors (ruthenium oxide, cernox, silicon diodes, platinum, thermocouple and RhFe)
- Base system includes a single temperature sensor input and 80W heater output for precise temperature PID control

Expandable

Customisation is possible through the addition of plug and play expansion cards. The controller features 9 expansion slots (8 multi-function slots and a dedicated GPIB slot) which can be used to extend its capability.

Expansion cards include additional temperature sensor inputs and heater outputs, pressure transducer inputs, stepper motor drive allowing gas flow regulation and efficient use of liquid helium in flow cryostats and cryogen level metering of both helium and nitrogen.

Temperature sense

Heater

Gas flow control

Level meter

GPIR

Sample.T (K) 294.2845 Sample_Htr 8%	VTI.T (K) 1.6616 VTI_Heater 9% D8(3).G(1) 22%	Sample_Htr.V (V) 1.4133
DB[5].L[1].G (%) 63.4613	DB[5].L[1].G (%) 11.1235	VTI_Heater.V (V) 1.5111
Plot	Control Settings	Heater >

Back and front panel of **Mercury**iTC

* Base system includes thermometer and heater control as standard. Additional configuration to a maximum of 8 options can be installed.

System control

The intuitive touch screen user interface facilitates easy monitoring, control and configuration of your experimental system.

MercuryiPS intelligent magnet power supply

Stable measurements

- Bi-polar, four quadrant magnet power supply
- ± 60 A and ± 10 V output
- Highly accurate and stable, better than 2.8 mA current stability at 120 A
- Low noise
- iSense intelligent magnet monitoring and quench protection. Auto-rundown allowing the **Mercury**iPS to be programmed to run magnet down safely in event of over temperature or low cryogen levels
- Supports vector rotate magnets

MercuryiPS

Back panel of **Mercury**iPS

Easy connection to your **Mercury** instrument via multiple remote interfaces: Ethernet, GPIB, serial or USB

- Easy integration within your data acquisition programs and direct and remote control of your cryogenic and superconducting magnet system
- The **Mercury**iTC has also a number of pre-configured control modes, e.g., Heliox control, Lambda Fridge control, rotator control, etc.
- Rear panel connections are consistent with previous units from us, for easy system upgrades

• Design based on 60 A master and slave units

Configurable

 Configurable in series or parallel combinations up to 600 A output. For example 180 A with ± 20 V output or 600 A with ± 10 V

MercuryiTC temperature controller

MercuryiPS magnet power supply Configurable module specifications (typical)

Output current

Output voltage

Output polarity

Current resolution

Current stability

Max sweep rate

Current ripple

Thermometry

Number of inputs	1 incl. as standard, up to 8 extra
A/D Resolution	24-bit analog to digital
Maximum reading rate	Up to 4 readings per sec
Isolation	All sensors independantly isolated
Supported sensor types	All standard types for diode/RTD and thermocouple
Heater	
Number of inputs	1 incl. as standard, up to 3 extra
A/D Resolution	16-bit
Max heater power	80 W
Max current	2 A
Max voltage	40 V
Heater load range	20 Ohms to 120 Ohms
Heater noise (0 - 2MHz)	2 mV

Configuration options*

Sensor input	Up to 9
Heater output	Up to 4
N2 / He level meter	Up to 2
Auxillary control (stepper motor)	Up to 4
GPIB	1

Control

Number of loops	1 incl. as standard, up to 3 extra
PID control	Fixed or zonal
Set point	Programmable
Proportional gain	0 to 200 K (resolution 0.1)
Integral time	0 to 200 mins (resolution 0.001)
Derivative rate	0 to 300 mins (resolution 0.001)

Input

Mains input	3 pin UL/CSA compliant. Auto range setting
Supply voltage	90 to 264 VAC
Frequency	47 to 63Hz

Interface

RS232	With isobus support. Configured as DCE
Ethernet	10/100 RS422 IEE802.3
USB	Serial port emulation
GPIB	IEEE-488 (Option)
RS485 Modbus	Control between Master and Slave

Resolution 0.01 A/min Load inductance Up to 1000H

± 2 mA or 0.005% per °C

	00 100011
Switch heater output	0 to 120 mA into 0 – 100 ohms. 12 V max
Max steady state power	600 W

module

± 10 V

Bi-polar

0.15 mA

< 0.001%

1200 A/min

Visit www.oxford-instruments.com/mercury for more information

± 60 A via rear panel busbar per

This publication is the copyright of Oxford Instruments Nanotechnology Tools Ltd and provides outline information only, which (unless agreed by the company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or regarded as the representation relating to the products or services concerned. Oxford Instruments' policy is one of continued improvement. The company reserves the right to alter, without notice the specification, design or conditions of supply of any product or service. Oxford Instruments acknowledges all trademarks and registrations. © Oxford Instruments Nanotechnology Tools Ltd, 2017. All rights reserved.

The Business of Science*